Polymorphisms in the two helicases ERCC2/XPD and ERCC3/XPB of the transcription factor IIH complex and risk of lung cancer: a case-control analysis in a Chinese population.
نویسندگان
چکیده
The transcription factor IIH (TFIIH) helicases ERCC2/XPD and ERCC3/XPB are responsible for opening the DNA strand around the lesion site during nucleotide excision repair process. Genetic variants in these two genes may be markers for interindividual variability in DNA repair capacity and thus predisposition to cancer risk. In this case-control study of 1,010 incident lung cancer cases and 1,011 age and sex frequency-matched cancer-free controls in a Chinese population, we genotyped eight tagging polymorphisms of ERCC2 and ERCC3 using the high-throughput Taqman platform to determine their associations with risk of lung cancer. Although none of the eight polymorphisms was individually associated with lung cancer risk, we found that genetic variants in ERCC2 and ERCC3 jointly contributed to lung cancer risk in a dose-response manner. Compared with those with 0 to 1 "at-risk" locus, subjects carrying >1 at-risk loci were at increased risk for lung cancer [adjusted odds ratio (OR), 1.29; 95% confidence interval (95% CI), 0.98-1.70 for 2 at-risk loci; adjusted OR, 1.38; 95% CI, 1.02-1.85 for 3 at-risk loci; and adjusted OR, 1.51; 95% CI, 1.09-2.10 for > or =4 at-risk loci, respectively; P(trend) = 0.015]. This combined effect was slightly more evident in young subjects (<60 years), males, current smokers, and those with family history of cancer, particularly for histologic type of adenocarcinomas. No evidence for interaction was found. These findings indicate that these tagSNPs of the ERCC2 and ERCC3 along with their surrounding regions may serve as biomarkers of susceptibility to lung cancer, which warrant further validation by other population-based and phenotypic studies to determine the biological relevance of these tagSNPs.
منابع مشابه
The DNA repair genes XPB and XPD defend cells from retroviral infection.
Reverse transcription of retroviral RNA genomes produce a double-stranded linear cDNA molecule. A host degradation system prevents a majority of the cDNA molecules from completing the obligatory genomic integration necessary for pathogenesis. We demonstrate that the human TFIIH complex proteins XPB (ERCC3) and XPD (ERCC2) play a principal role in the degradation of retroviral cDNA. DNA repair-d...
متن کاملAffinity purification of human DNA repair/transcription factor TFIIH using epitope-tagged xeroderma pigmentosum B protein.
TFIIH is a high molecular weight complex with a remarkable dual function in nucleotide excision repair and initiation of RNA polymerase II transcription. Mutations in the largest subunits, the XPB and XPD helicases, are associated with three inherited disorders: xeroderma pigmentosum, Cockayne's syndrome, and trichothiodystrophy. To facilitate the purification and biochemical characterization o...
متن کاملG-quadruplexes are genomewide targets of transcriptional helicases XPB and XPD
G4 motifs are greatly enriched near promoters, suggesting that quadruplex structures may be targets of transcriptional regulation. Here we show, by ChIP-Seq analysis of human cells, that 40% of the binding sites of the transcription-associated helicases, XPB and XPD, overlap with G4 motifs. The highly significant overlap of XPB and XPD binding sites with G4 motifs cannot be explained by GC rich...
متن کاملMutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH.
As part of TFIIH, XPB and XPD helicases have been shown to play a role in nucleotide excision repair (NER). Mutations in these subunits are associated with three genetic disorders: xeroderma pigmentosum (XP), Cockayne syndrome (CS) and trichothiodystrophy (TTD). The strong heterogeneous clinical features observed in these patients cannot be explained by defects in NER alone. We decided to look ...
متن کاملBax1 is a novel endonuclease: implications for archaeal nucleotide excision repair.
The helicases XPB and XPD are part of the TFIIH complex, which mediates transcription initiation as well as eukaryotic nucleotide excision repair (NER). Although there is no TFIIH complex present in archaea, most species contain both XPB and XPD and serve as a model for their eukaryotic homologs. Recently, a novel binding partner for XPB, Bax1 (binds archeal XPB), was identified in archaea. To ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology
دوره 15 7 شماره
صفحات -
تاریخ انتشار 2006